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1 THE RINGS, INJECTION, AND RF

The present very-large-hadron-collider (VLHC) design consists of two phases [1]. In

Phase 1, bunches are injected from the Tevatron into the low-field rings at 900 GeV and

are accelerated to 20 TeV. In Phase 2, bunches from the low-field rings are extracted

at 10 TeV and injected into the high-field rings and accelerated to 87.5 TeV. Low-field

implies the reaching of 1.96 Tesla while high-field implies 10 Tesla. The rings of both

phases are chosen to be of the same size, 2πR = 231.727 km in circumference, and

same rf frequency. In order to have shorter bunches, the rf frequencies in both phases

are chosen 9 times higher than that of the Tevatron, so that the bunches in the VLHC

will be separated by 9 rf buckets. The rf harmonic is h = 9hTR/RT = 369432, where

hT = 1113 is the rf harmonic of the Tevatron and RT = 1.0 km is its mean radius. The rf

voltage has been chosen to be Vrf = 50 MV. However, after injection into the high-field

rings, Vrf has to be raised to 200 MV so that acceleration can be accomplished within

the designed time interval.

In order to avoid or reduce the possibility of longitudinal and transverse single

bunch instabilities, the rms bunch area of bunches inside the VLHC buckets are chosen

as A = 2.0 eV-s, very much larger than the AT = 0.359 eV-s rms bunch area [2] of the

Tevatron bunches at 900 GeV. However, with Vrf = 50 MV, the maximum energy spread

and bucket area are, respectively,[
∆E

E

]
bucket

=

√
2eVrf

πh|η|E = 2.09 10−3 , (1.1)

Abucket =
8

ω0

√
2eVrfE

πh|η| = 5.01 eV-s , (1.2)

where η = 2.91 10−5 is the slip factor of the VLHC rings in both phases, f0 = ω0/(2π) =

1.294 kHz their revolution frequency, and E = 900 GeV the injection energy. This

bucket is definitely too small for the rms 2 eV-s bunch. In the discussions below, we

assume that the bunches in the low-field rings injected from the Tevatron will be of

rms bunch area 0.359 eV-s. By the way, the Tevatron rf has its maximum voltage at

1 MV only, the bunch length being too long and the momentum spread too small to

fit the VLHC buckets at injection. Thus, the Tevatron bunches must be shortened by

either a bunch rotation or the installation of a higher rf voltage before the transfer to

the VLHC is possible. Some relevant rf and beam parameters of the VLHC rings are

listed in Table 1 for convenience.
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Table 1: Parameters of the VLHC rings in Phase 1 and Phase 2, at injection and storage
modes. For the last row, see Sec. 5.

PHASE 1 PHASE 2

Injection Storage Injection Storage

Rings and RF

Circumference C=2πR 231.727 231.727 231.727 231.727 km

Energy E 1.0 20.0 10.0 87.5 TeV

Bunch separation 9 9 9 9 buckets

Rf harmonic h 369432 369432 369432 369432

Rf voltage Vrf 50 50 50 200

Slip factor 2.190 10−5 2.190 10−5 2.190 10−5 2.190 10−5

Synchrotron tune νs 8.46 10−3 1.79 10−3 2.54 10−3 1.72 10−3

Max. energy spread 2.09 10−3 4.44 10−4 6.27 10−4 4.24 10−4

Bucket area 5.013 23.631 16.71 98.86 eV-s

Betatron tune νβ 214 214 214 214

Beams

Bunch frequency 53.105 53.105 53.105 53.105 MHz

Bunch filling 90% 90% 90% 90%

Number of bunches 36943 36943 36943 36943

Number per bunch Nb 2.48 1010 2.48 1010 0.90 1010 0.90 1010

rms bunch area 0.359 2.00 2.00 2.00 eV-s

rms bunch length σ`/στ 6.03/0.201 6.55/0.219 7.79/0.260 3.21/0.107 cm/ns

rms energy spread σδ 6.31 10−4 1.46 10−4 2.45 10−4 6.81 10−5

Freq. at bunch mode

m = 0, f(0) 0.507 0.467 0.393 0.955 GHz

m = 1, f(1) 1.015 0.934 0.785 1.910 GHz

meff = 0.304, f(meff) 0.169 0.156 0.131 0.318 GHz
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A bunch excited by forces in the vacuum chamber oscillates in the longitudinal

phase space in modes describable by the radial mode parameter nr designating nr radial

nodes and the azimuthal mode parameter m designating |m| azimuthal nodes. For a

given m, the most easily excited radial mode is nr = |m| and only these radial modes

will be included in the discussion below. Almost distribution independent, the spectrum

for the mode designated by m 6= 0 peaks at frequency

f(m) ≈
|m|+ 1

2τL
, (1.3)

where τL is the total length of the bunch in time. In Gaussian distribution, we approx-

imate it by the 95% length τL = 2
√

6στ , where στ is the rms bunch length. Actually,

the spectrum of this mode is nonzero only at the m-th synchrotron sidebands of, respec-

tively, the revolution harmonics for longitudinal discussion and the betatron tune lines

for transverse discussion. For m = 0, the spectrum has a frequency spread from −f(0)

to +f(0) with f(0) given by Eq. (1.3). Both f(0) and f(1) are listed in Table 1. Note that

these frequencies for the VLHC bunch modes are in the GHz range.

2 RESISTIVE WALL

The longitudinal impedance of the wall of a cylindrical beam pipe of radius b is, at

angular frequency ω or harmonic n,[
Z‖
n

]
wall,cyl

= [sgn(ω) + j]
Rρ

bδ1
|n|−1/2 , (2.4)

where ρ is the resistivity of the beam pipe wall and

δ1 =

√
2ρ

ω0µ
(2.5)

is the skin depth at the revolution harmonic and µ the magnetic permeability. The

VLHC beam pipes for the low-field rings are warm with an elliptical cross section of

radii h = 9 mm and w = 14.0 mm. The longitudinal impedance is given by[
Z‖
n

]
wall

=

[
Z‖
n

]
wall,cyl

FL (2.6)
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with b = h, while the transverse impedance is

[ZV,H]wall =
2R

h2

[
Z‖
n

]
wall,cyl

F
V,H

, (2.7)

with |n|−1/2 replaced by |n − νβ|−1/2. In above, the form factors are FL = 0.938, FV =

0.821, and FH = 0.408, for this particular elliptic beam pipe. The beam pipes for the

high-field rings are at 80◦ to 100◦K and are circular in cross section with a radius of

b = 1 cm. These are computed for a stainless steel beam pipe (ρ = 7.40 10−7 Ω-m at all

temperatures), an aluminum beam pipe (ρ = 2.65 10−8 Ω-m at all temperatures) and a

copper beam pipe (ρ = 1.70 10−8 Ω-m at room temperature, 1.60 10−9 Ω-m at 80◦K).

The results are tabulated in Table 2.

Power dissipated at the wall of the beam pipe by M bunches each containing Nb

protons is

P = Γ
(

3
4

)
M

[
Nbec

2π

]2 [Z0ρ

2

]1/2 1

σ
3/2
` b

, (2.8)

where Γ
(

3
4

)
= 1.225416702 is the Gamma function at 3

4
, and the beam pipe has been

approximated to be cylindrical with radius b. Note that the power loss is proportional to

σ−3/2
` where σ` = στc is the rms bunch length and c the velocity of light. As is displayed

in Table 2, the power loss in each aluminum beam beam pipe is 0.13 to 0.11 W/m in

Phase 1 and 0.012 to 0.044 W/m in Phase 2. For each copper beam pipe, the power

loss is 0.011 to 0.092 W/m in Phase 1 and 0.003 to 0.011 W/m in Phase 2. However,

for each stainless steel beam pipe, the power loss reaches 0.70 to 0.61 W/m in Phase 1

and 0.062 to 0.24 W/m in Phase 2.

In the VLHC, the resistive wall impedances of the beam pipe dominate because of

its large size and small pipe radii. At a fixed frequency† ω/(2π), the wall impedances

scale as [
Z‖
n

]
wall

∝ 1

h

√
R

ω
and [Z⊥]wall ∝

1

h3

√
R3

ω
. (2.9)

where R is the radius of the ring. On the other hand, the inductive parts of the impe-

dances of the beam position monitors (BPMs), for example, scale as[ImZ‖
n

]
BPM

∝ 1√
Rω

and [Z⊥]BPM ∝
√
R

h2ω
, (2.10)

†Looking at a fixed revolution harmonic, the right side of each equation in Eqs (2.9) and (2.10)
should be multiplied by a factor of

√
R.
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where we have assumed that the betatron tune and therefore the number of BPM sets

scale as
√
R. The contributions of the BPMs are plotted alongside with the contributions

of the resistive wall in Fig. 1. We see that the contributions of the BPMs are about an

order of magnitude smaller than those of the resistive wall, even if the cold copper pipes

are taken as reference. The derivation of the BPM impedances is given in the Appendix.

3 POTENTIAL-WELL DISTORTION

The bunch of the prescribed length στ and energy spread σE listed in Table 1 will match

the rf bucket set up at the voltage of Vrf = 50 MV (or 200 MV for Phase 2 at storage).

In the presence of an inductive impedance ImZ‖/n, the particles inside a bunch see an

additional force proportional to the gradient of the particle distribution. Providing that

the bunch is short, a beam particle at a time advance τ with respect to the synchronous

particle sees a potential drop or voltage of

Vind =
eNb√

2πω0σ2
τ

ImZ‖
n

τ

στ
, (3.11)

which is to be subtracted from the rf voltage supplied by the klystron. Thus, for an

inductive impedance at the rf harmonic, this induced voltage counteracts the supplied rf

voltage. The bunch shape will be distorted and its length increased. As an illustration,

we evaluate this voltage distortion at the 95% of the bunch or τ =
√

6στ . As shown in

Table 2, this inductive voltage, Vind, can be as large as 5 MV for a stainless steel beam

pipe, but is less than 1 MV for the aluminum pipe and copper pipe. The low-field beam

pipe will be made of aluminum while the high-field beam pipe will be of stainless steel

coated internally with copper. Thus, the bunch shape will not be affected much by the

inductive wall. In other words, potential-wall distortion is of no importance here.

4 LONGITUDINAL MODE-COUPLING

For only motion in the longitudinal phase space, mode m = 0 represents static motion

like the potential-well distortion that we discussed before. The next modes are the dipole

mode m = 1, quadrupole mode m = 2, etc. In the presence of coupling impedance,
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Figure 1: Longitudinal impedance Z‖/n (upper plot) and transverse impedance (lower plot).
In each plot, from top: real or imaginary parts of resistive wall contribution for a stainless
steel beam pipe, an aluminum beam pipe, and a cold copper beam pipe. Lower curves: real
and imaginary parts of the BPM contribution. All beam pipes are elliptical with radii 9 mm
by 14 mm. One set of BPM striplines, either horizontal or vertical is assumed at each location
of a FODO quadrupole. Each stripline is of length 8 cm subtending an angle of 30◦ at the
center of the pipe.
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Table 2: Collective instability limits of the VLHC bunches.

PHASE 1 PHASE 2

Injection Storage Injection Storage

Beam pipe radii h/w 9/14 9/14 10/10 10/10 mm

Rf voltage Vrf 50 50 50 200 MV

Mode coupling limit (Z‖/n)eff 6.26 8.05 37.37 10.37 Ω

Mode coupling limit (Z⊥)eff 112 576 1334 3245 MΩ/m

Resistivity of stainless steel ρ 7.40 10−7 7.40 10−7 7.40 10−7 7.40 10−7 Ω-m

Skin depth at n = 1, δ1 1.20 1.20 1.20 1.20 cm

Wall imp. at n = 1, [Z‖/n]1 236 236 237 237 (1+j) Ω

[Z⊥]1 1.88 105 1.88 105 1.67 105 1.67 105 (1+j) MΩ/m

Re or Im(Z‖/n)wall at rf freq 0.389 0.389 0.373 0.373 Ω

Voltage distortion 4.59 3.89 0.957 5.66 MV

Re or Im(Z‖/n)wall at m = 1 0.267 0.278 0.291 0.187 Ω

Re or Im(Z⊥)wall at meff 521 543 592 380 MΩ/m

Power loss per unit length 0.703 0.610 0.062 0.235 W/m

Multi-bunch growth time 0.23 5.1 7.9 67.7 turns

Resistivity of aluminum ρ 2.65 10−8 2.65 10−8 2.65 10−8 2.65 10−8 Ω-m

Skin depth at n = 1, δ1 0.23 0.23 0.23 0.23 cm

Wall imp. at n = 1, [Z‖/n]1 44.7 44.7 42.9 42.9 (1+j) Ω

[Z⊥]1 3.56 104 3.56 104 3.16 104 3.16 104 (1+j) MΩ/m

Re or Im(Z‖/n)wall at rf freq 0.0736 0.0736 0.0706 0.0706 Ω

Voltage distortion 0.869 0.735 0.181 1.07 MV

Re or Im(Z‖/n)wall at m = 1 0.0505 0.0527 0.0551 0.0353 Ω

Re or Im(Z⊥)wall at meff 98.5 103 112 71.8 MΩ/m

Power loss per unit length 0.133 0.115 0.012 0.044 W/m

Multi-bunch growth time 1.20 26.8 41.5 363 turns

Resistivity of copper ρ 1.70 10−8 1.70 10−8 1.60 10−9 1.60 10−9 Ω-m

Skin depth at n = 1, δ1 0.018 0.018 0.056 0.056 cm

Wall imp. at n = 1, [Z‖/n]1 35.8 35.8 10.5 10.5 (1+j) Ω

[Z⊥]1 28.5 103 28.5 103 7.78 103 7.78 103 (1+j) MΩ/m

Re or Im(Z‖/n)wall at rf freq 0.0589 0.0589 0.0173 0.0173 Ω

Voltage distortion 0.696 0.589 0.044 0.263 MV

Re or Im(Z‖/n)wall at m = 1 0.0405 0.0422 0.0135 0.0087 Ω

Re or Im(Z⊥)wall at meff 78.9 82.3 27.5 17.7 MΩ/m

Power loss per unit length 0.106 0.092 0.0029 0.011 W/m

Multi-bunch growth time 1.5 33.4 161 1477 turns
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the synchrotron sidebands are no longer equally separated with the m-th sideband at

±mνsf0. The m = 2 sideband will move towards the m = 1 sideband as coupling

impedance and/or bunch intensity increase. When the two sidebands merge into one,

the m = 1 and m = 2 modes couple and an instability develops. This instability is

not death threatening, stability will be regained after the bunch is lengthened and the

energy spread increases. The threshold of the instability is given approximately by, for

Gaussian distribution [3], [ImZ‖
n

]
eff

.
2π|η|Eσ2

E

eIpk

(4.12)

where Ipk = eNb/(
√

2πστ) is the bunch peak current, and the effective impedance is

[ImZ‖
n

]
eff

=

∫
dω
ImZ‖
ω

ω0hm(ω)∫
dωhm(ω)

, (4.13)

and hm(ω) the power spectrum of mode m and
∫
dω implies discrete summation over

all the m-th synchrotron sidebands. The longitudinal mode-coupling stability limits

are listed in Table 2 for various situations of the VLHC operation. The instability will

develop first near m = 1. Thus we evaluate the resistive wall impedance at f(1), with

results shown in Table 2. We see that with a stainless steel beam pipe, the impedance

Z‖/n at f(1) in Phase 1 is only 0.267/0.278 Ω at injection/collision, and is very much lower

than the stability limit of 6.26/8.05 Ω. Thus, no longitudinal mode-coupling instability

will occur. The same is true for Phase 2.

Let us understand how the stability limit scales as the size of the accelerator ring

increases. Notice that |η| ∼ ν−2
β in a FODO lattice and therefore scales as |η| ∝ R−1.

Therefore, when the impedance of the ring is dominated by the resistive wall, the mi-

crowave stability criterion in Eq. (4.12) scales as, at a fixed frequency,

R1/2 .
AσE
RIb

∝ AσE
Nb

, (4.14)

where Eq. (2.9) has been used. Thus the instability becomes worse as
√
R as the size of

the ring increases.
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5 TRANSVERSE MODE-COUPLING

With transverse motion, the m = 0 is a valid mode, which describes the bunch making

rigid dipole oscillations in the transverse plane. This corresponds to just the pure beta-

tron sidebands. Driven by the transverse impedance, the betatron tune decreases and

the pure betatron sideband moves towards its first lower m = −1 synchrotron sideband.

An instability will develop when the two overlap, which we call transverse mode-coupling

instability (TMCI). Unlike the longitudinal counterpart, this instability is devastating.

The growth time is usually small.

For an average bunch current Ib, the threshold of instability can be estimated by

equating the downshift of the dipole betatron frequency to a synchrotron frequency. The

threshold driving impedance is

[ImZ⊥]eff .
8Eω2

0νβνsστ
eIbc

, (5.15)

where the effective transverse impedance is

[ImZ⊥]eff =

∫
dω ImZ⊥(ω)hm(ω)∫

dωhm(ω)
, (5.16)

and
∫
dω implies discrete summation over the m = 0 synchrotron sidebands of the

betatron tune lines (or just the betatron sidebands). These limits for various operations

are listed in Table 2. It appears that the resistive wall impedance should be evaluated

at frequency between f(0) and f(1), where the two modes collide. In fact, for a Gaussian

bunch interacting with the resistive wall impedance, this effective frequency can be

computed. Substituting the Gaussian spectrum and Eq. (2.7) into Eq. (5.16) gives

[ImZ⊥]eff =
[ImZ⊥]1

n1/2
eff

(5.17)

with

neff =
4π

ω0στΓ2
(

1
4

) or feff =
2

στΓ2
(

1
4

) =
0.304

2στ
, (5.18)

where Γ
(

1
4

)
= 3.63561 is the Gamma function evaluated at 1

4
. This corresponds to f(meff)

with meff = 0.304 if Eq. (1.3) is used. For an aluminum beam pipe, which is used in

the Phase 1 rings, the results as seen in Table 2 show that the threshold impedances are
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98.5/102.7 MΩ/m at injection/collision, which are smaller than the stability limits of

125.7/643.9 MΩ/m. Thus, no transverse mode-coupling instability (TMCI) will occur

and the safety factors are 1.27/6.26. For the Phase 2 rings where stainless steel beam

pipes are used, the threshold impedances are 592/380 MΩ/m at injection/collision, which

are less than the stability limits of 1492/3629 MΩ/m. The safety factors are 2.52/9.55.

The threshold of TMCI has been computed by Burov et al., [5] for the low-field

VLHC bunches using a matrix approach by including 5 radial and 5 azimuthal modes

and also verified by particle tracking. The resulting threshold at injection with the

nominal set of parameters turns out to be only about half the designed intensity. After

carefully examining the input parameters, it is concluded that the safety factor estimated

from Eq. (5.15) appears to be ∼ 33% larger than the result of Burov et al. Blaskiewicz

[4] also solved the matrix equation to compute the threshold numerically for the high-

field bunches and found the safety factor ∼ 1.7 1010/0.91010 = 1.89. Thus, there is a

consistency that Eq. (5.15) always gives a threshold that is higher than that obtained

from solving the coupling matrix by 30 to 40%. One source of discrepancy is related to

the fact that the transverse coupling impedance driving the instability in the VLHC is

dominated by the resistive wall rather than a broad band. The transverse resistive wake

goes to infinity as the inverse square root of the distance between the source and the test

particles, and this distance has been taken as the rms bunch length in the estimation

using the simple formula of Eq. (5.15). On the other hand, the matrix approach brings

up numerical convergence questions from the divergence of the wake at small distances.

This discrepancy is very important for the low-field VLHC, because Burov’s result points

to an unstable bunch at injection while the estimate of Eq. (5.15) says that the bunch

is just below the instability threshold. Even for the high-field bunches, the discrepancy

lowers the safety limits significantly.

The high-field beam pipes are coated with a 50 µm layer of copper. The cold copper

skin depth at the effective frequency at injection is only 1.76 µm. Thus only copper will

be seen by the frequency components that take part in the transverse mode coupling.

In other words, the safety factor should be very much enhanced.

As the size of the ring increases, the stability criterion of Eq. (5.15) scales as

R3/2 .

√
Rνsστ
Nb

. (5.19)

Thus, TMCI becomes worse as R. Comparing with Eq. (4.14), TMCI will have a lower

threshold than the longitudinal microwave instability as the size of the ring increases.
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5.1 BUNCH COALESCENCE

Facing the danger of TMCI of the low-field bunches at injection and the inability to

estimate an accurate theoretical threshold, it is advisable to divide the bunch into a

number of less intense bunches and perform a coalescence at a higher energy. In this

section, we are going to estimate the rf voltage required for the coalescence.

A low-field VLHC bunch has an intensity of 2.5 1010 particles in a ωrf/(2π) =

478.0 MHz rf bucket with rf harmonic h = 369432, corresponding to a ring circumference

of C = 231.7 km. Assume that this bunch is divided into 5 bunches at consecutive

buckets at injection. The coalescence operation consists of the following steps:

(1) The coalescence is to be performed at 20 TeV when the rf voltage is Vrf = 50 MV.

The parameter lists supplied by Foster [1] call for a rms bunch area of 2.0 eV-s at

storage. We therefore assume the rms bunch area of each bunch before coalescence be

A ∼ 2.0/5 = 0.4 eV-s, or a total bunch area At ∼ 2.4 eV-s. The half energy spread and

half width of the bunch are, respectively,[
∆E

E

]
1

=

√
ωs1At

π|η|E = 1.60 10−4 ,

[∆τ ]1 =

√
|η|At

πEωs1
= 0.239 ns , (5.20)

where ωs1/(2π) is the synchrotron frequency at the rf voltage V1 = 50 MV and η =

2.19 10−5 is the slip factor.

(2) The rf voltage Vrf is snapped down to V2 so that the bucket height is equal to

the energy spread of the bunch. We have

eV2

E
=
π|η|h

2

[
∆E

E

]2

1

= 3.23 10−7 , (5.21)

or V2 = 6.47 MV.

(3) The bunch is allowed to rotate 90◦ with synchrotron frequency

ωs2
2π

=

√
|η|heV2

2πE

ω0

2π
= 0.835 Hz , (5.22)
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where ω0/(2π) = 1.29 kHz is the revolution frequency. The half energy spread becomes[
∆E

E

]
2

=
ωs2
|η| [∆τ ]1 = 5.74 10−5 . (5.23)

(4) The rf is then turned off and the coalescence rf with a frequency of 478.0/9

=53.11 MHz (hc = h/9) is turned on. The 5 bunches are rotated in the longitudinal

phase space by 90◦ and the 478.0 MHz rf is then switched on to capture these bunches

into one bucket. For total capture, the half energy spread (∆E/E)2 of the bunches must

rotate to a half width (∆τ )c less than k times half a rf wavelength π/ωrf , where k < 1.

Notice that the phase equation of motion is

dτ

dt
= η

δE

E
. (5.24)

We therefore require

[∆τ ]c =
|η|
ωsc

[
∆E

E

]
2

.
kπ

ωrf
, (5.25)

where

ωsc = ω0

√
|η|hceVc

2πE
(5.26)

is the synchrotron frequency driven by the 53.11 MHz rf system at voltage Vc. The result

is
eVc
E
&

h2|η|
2πk2hc

[
∆E

E

]2

2

=
1.53 10−7

k2
, (5.27)

or Vc & 3.05k−2 MV. The half energy spread of the coalesced bunch will be roughly 5

times the original multiplied by the factor k2, or[
∆E

E

]
c

≈ 5k2

[
∆E

E

]
2

= 2.87 10−4k2 . (5.28)

The voltage of the captured rf at h = 9hc must be at least

V4 =
πh|η|E

2e

[
∆E

E

]2

coales

=

(
5kπ

6

)2

Vc = 20.9k2 MV . (5.29)

The rf voltage is then raised to 50 MV adiabatically, so that the coalesced bunch, having

a rms bunch area of roughly, 2 eV-s will have the designed bunch length for collision.
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5.1.1 An ALTERNATE METHOD

In Step 3 of the coalescence, the synchrotron frequency is 0.834 Hz. Thus it takes 0.30 s

for the bunch to rotate 90◦ and spread out. It is important to check whether longitudinal

microwave instability will develop or not in this long duration. At the end of the spread,

the bunch occupies the whole width of the bucket, which is C/(ch) = 2.09 ns, or a

rms length of στ ≈ 0.427 ns. The coalesced bunch should have a designed intensity

of 2.48 1010 particles. Before coalescence, the intensity of each bunch is 1/5 of it, or

Nb = 0.496 1010, corresponding to a peak current Ipk = eNb/(
√

2πστ) = 0.742 A. The

Krinsky-Wang instability threshold is [3]

Z‖
n

=
2π|η|Eσ2

E

eIpk
= 12.2 Ω . (5.30)

The resistive wall impedance for the VLHC beam pipe composing of stainless steel was

found to be only ReZ‖/n = 0.389 Ω at rf frequency. We can therefore conclude that

longitudinal microwave instability will not occur.

Since we are far away from this instability, instead of snapping, one may also choose

to reduce the 478.0 MHz rf voltage adiabatically in Step 2 so that the bunch fills the

whole bucket. This method will lead to a lower energy spread before coalescence, and

therefore a lower coalescence voltage in the 53.11 MHz rf. The lowest rf voltage required

is
eV2

E
=
π|η|h

2

(
hω0At

8E

)2

= 4.03 10−8 , (5.31)

or V2 = 0.8064 MV. The half energy spread is the same as the bucket height, or[
∆E

E

]
2

=

√
2V2

πh|η|E = 5.63 10−5 . (5.32)

Step 3 is no longer necessary. We go to Step 4 where the coalescence rf is turned on to

eVc
E
&

9h|η|
2πk2

[
∆E

E

]2

2

=
1.47 10−7

k2
, (5.33)

or Vc & 2.94k−2 MV. The half energy spread is now[
∆E

E

]
c

≈ 5k2

[
∆E

E

]
2

= 2.82 10−4k2 . (5.34)
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The voltage of the captured rf at h = 9hc must be at least

V4 =
πh|η|E

2e

[
∆E

E

]2

coales

=

(
5kπ

6

)2

Vc = 20.1k2 MV . (5.35)

6 COUPLED-BUNCH INSTABILITY

The revolution frequencies of the VLHC rings are only 1.29 kHz. Thus the transverse

resistive wall impedance at the betatron sideband of lowest negative frequency becomes

very large and will drive a coupled-bunch instability.

For Ms identical equally spaced bunches in the ring, there are µ = 0, · · · , Ms−1

transverse coupled modes when the center of mass of one bunch lags behind its prede-

cessor by the betatron phase of 2πµ/Ms. At the same time, each bunch can execute

longitudinal motion with m = 0, 1, · · · nodes. The growth rate for the µm-th mode is

1

τµm
= − 1

1+m

eMIbc

4πνβE

∑
k

ReZ⊥[(kMs − µ+ νβ +mνs)ω0]F ′m(ωτL−χ) , (6.36)

whereM is the number of bunches. Strictly speaking Eq. (6.36) is correct only ifM = Ms

or if the bunches are equally spaced. According to the 9-bucket spacing, the VLHC rings

will be only 90% filled. Thus Eq. (6.36) will not be an accurate description of the beam

dynamics.

As the frequency ω → ±0, the real part of the resistive-wall impedance approaches

first ±|ω|−1/2, then |ω|−1 when the skin depth exceeds the thickness of the pipe wall,

and finally zero when the frequency is exactly zero. Therefore, there is always a mode

µ that corresponds to a large negative ReZ⊥ and drives the transverse coupled-bunch

instability. For example, with the betatron tune νβ = 214.4, mode µ = 215 or frequency

−0.6ω0/(2π) = 0.776 kHz with k = 0 in the summation of Eq. (6.36) contributes

the largest negative ReZ⊥, which is −5.63 104 MΩ/m if the Phase 1 beam pipe is of

aluminum. Here, we stick to the ±|ω|−1/2 dependency of the resistive wall impedance

for simplicity, although at such a low frequency, the thickness of the beam pipe wall may

be thinner than the skin depth. The next contribution with k = 1 will give ReZ⊥ =

+227 MΩ/m which is negligibly small compared with the contribution at harmonic −0.6,

which therefore dominates the contribution.

The growth rates turn out to be extremely fast in all situations. The e-folding

growth time is 1.2/27 turns for Phase 1 at injection/storage, where aluminum pipes
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are considered. Correspondingly, the growth time for Phase 2 is 7.0/61 turns at injec-

tion/storage for stainless steel pipe. We use stainless steel because at a frequency less

than 1 kHz, the influence of the 50 µm cold copper will be limited. Fortunately, the

frequency of this mode is very low, around 1 kHz. A damper can be easily designed.

As the size of the accelerator ring increases, it is easy to show that the growth time

in revolution turns scales as

Growth time in turns ∝ Nb

R
, (6.37)

which explains why this transverse coupled-bunch instability driven by the resistive wall

is so bad for the VLHC.

7 LONGITUDINAL HEAD-TAIL

Longitudinal head-tail instability has been observed in the Tevatron and we would like to

examine its effect in the VLHC. This instability is a result of the asymmetric dependence

of the momentum compaction factor α = α0(1 +α1δ) + · · · on the momentum deviation

δ. Thus, a bunch will have slightly different length and therefore lose energy differently

in the upper and lower halves of the longitudinal phase space. The growth rate of the

synchrotron oscillation amplitude is given by

1

τ
= −f0

2

dU

dστ

στ
E
χ , (7.38)

where the energy loss per particle per turn is

U(στ) = e2N

∫
dω |ρ̃(ω)|2ReZ‖(ω) , (7.39)

and

χ =
α0(α1 − η + 3

2
)

η
≈ α1 +

3

2
(7.40)

denotes the asymmetry, which is roughly 2 since α1 ≈ 1
2

for a FODO lattice.

The instability can be driven by a sharp resonance like the fundamental mode of

the rf cavities. For the Tevatron, the quality factor Q ≈ 7000 and the shunt impedance
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is Rs = 1.2 MΩ. Here, for the VLHC, it is reasonable to assume Q to be the same while

Rs/Q = 1710, about 10 times larger. Thus, the growth rate of Eq. (7.38) scales as

1

τ
∝ 1

RE
∝ 1

R2
. (7.41)

Thus, we expect the growth rate to be very small for the VLHC. As shown in Table 3,

these growth rates are very much less than 86400−1 = 1.15 10−5 s−1, implying that

there will not be any appreciate growth of the synchrotron amplitude in a day. The

small growth rates are a result of the low rf frequency and short bunch length, which

represents a point on the upper plot of Fig. 2.to the very left of the −dU/dστ )στ peak.

The longitudinal head-tail instability can also be driven by a broad-band resonance

of the coupling impedance. If we assume Z‖/n ≈ 1 does not change much with the size

of the ring, Rs/Q will increase as the radius R of the ring. Thus, the growth rate driven

by the broad-band impedance scales as

1

τ
∝ 1

E
∝ 1

R
, (7.42)

and will dominate the growth driven by the sharp resonance of the rf cavities. The lower

plot in Fig. 2 gives the reduced differential energy loss, (dU/dστ )στ as a function of frστ
with fr denoting the frequency of the broad-band.

The growth rates driven by a broad-band impedance at various frequencies are

listed in Table 3. For the injection into the low-field rings, all growth rates from the

table exceed 3600−1 = 2.78 10−4 or with growth time less than an hour. Unfortunately,

the injection into the low-field rings is slow and is about an hour. Thus there will be

significant growth of the synchrotron amplitude and thus the bunch area. However,

there will not be any influence on the high-field rings at injection because that injection

takes less than 30 s.

At storage, the growth rates are 6.44 10−4 and 4.52 10−5 s−1, respectively, for Phase 1

and Phase 2 when fr = 3 GHz and Q = 1, or growth times of 4.31 and 6.15 hours. These

numbers appear to be insignificant for a store that lasts up to 10 hours. However, if

the resonant frequency is reduced, the growth rate will increase, which corresponds to

moving towards the peak of the −(dU/dστ )στ plot from the right side in the lower plot

of Fig. 2. As indicated in Table 3, when Q = 1 and fr = 1 GHz, the growth time reduces

to 1.79 hours for Phase 1 and becomes significant. On the other hand, the growth rate

for Phase 2 storage decreases instead as fr decreases, which is because frστ has become
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Figure 2: Plot of differential bunch energy loss (dU/dστ)στ versus frστ due to a sharp reso-
nance (upper) or a broad-band impedance (lower).
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Table 3: Parameters of the VLHC ring in Phase 1 and Phase 2, at injection and storage
modes.

PHASE 1 PHASE 2

Injection Storage Injector Storage

Driven by rf resonance

frf = 477.9 MHz, Rs/Q = 1710 Ω, Q = 7000

Growth rates 7.77 10−6 3.89 10−7 3.39 10−7 1.03 10−8 s−1

Driven by broad-band with Rs/n = 1.0 Ω

Growth rates (fr=3 GHz Q=1) 1.84 10−3 6.44 10−5 2.78 10−5 4.52 10−5 s−1

Growth rates (fr=2 GHz Q=1) 2.72 10−3 9.54 10−5 4.25 10−5 5.35 10−5 s−1

Growth rates (fr=1 GHz Q=1) 3.96 10−3 1.55 10−4 7.76 10−5 2.26 10−5 s−1

Growth rates (fr=1 GHz Q=2) 2.85 10−3 1.09 10−4 4.88 10−5 1.35 10−5 s−1

Driven by resistive wall

Resistivity of stainless steel ρ 7.40 10−7 7.40 10−7 7.40 10−7 7.40 10−7 Ω-m

Growth rate 2.44 10−4 9.71 10−6 5.43 10−6 2.36 10−6 s−1

Resistivity of aluminum ρ 2.65 10−8 2.65 10−8 2.65 10−8 2.65 10−8 Ω-m

Growth rate 4.63 10−5 1.84 10−6 1.03 10−6 4.45 10−7 s−1

Resistivity of copper ρ 1.70 10−8 1.70 10−8 1.60 10−9 1.60 10−9 Ω-m

Growth rate 3.71 10−5 1.47 10−6 2.53 10−7 1.10 10−7 s−1

so small that it goes past the peak of the −(dU/dστ )στ plot. It is also shown in the

table that the growth rate will drop if the quality factor Q increases.

The longitudinal head-tail instability can also be driven by the resistive wall impe-

dance. The differential energy loss in Eq (7.40) integrates to

dU

dστ
στ = −

3Γ
(

3
4

)
8π2

e2Nb[ReZ‖]1
ω1/2

0 σ3/2
τ

, (7.43)

where [ReZ‖]1 is the resistive part of the wall impedance at revolution frequency. The

results in Table 3 show that this instability is insignificant. For example, at the injection

of Phase 1, the growth time for the aluminum pipe is longer than the one hour injection

time. At storage, the growth times are tens of hours for both phases. However the

growth rate is inversely proportional to σ3/2
τ . Therefore, when the bunch length is

further shortened in future design or operation, longitudinal head-tail instability driven
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by the resistive wall impedance may become important.

8 OTHER ISSUES

We have not studied all types of instability. There are many bunches in the collider ring.

Therefore, coupled-bunch instabilities in both the longitudinal and transverse planes by

sharp resonances can be serious, and an investigation is required. The beam pipe has a

small bore. As a result, the image contribution to the coherent and incoherent betatron

tune shifts can be important

Also one should have a more thorough study of the impedance budget of the col-

lider ring, and see whether contribution from sources other than resistive wall is truly

unimportant.

APPENDIX BPM

With a betatron tune of 214, there will be 828 90◦ FODO in each of the VLHC rings.

If a set of beam position monitors (BPMs) is installed at each quadrupole, there will

be M = 1656 sets of beam position monitors in each VLHC ring, half of them detect

horizontally and half vertically. Similar to the Tevatron, we assume each set of BPMs

to be a pair of 2 cylindrical strip-lines of radius b = 0.9 cm, each subtending an angle‡

φ0 = 30◦ at the center of the beam pipe and is of length§ ` = 8 cm. Each stripline

is terminated at both ends and forms a transmission line of characteristic impedance

Zc = 50 Ω with the beam pipe wall that bulges out. The longitudinal and transverse

coupling impedances have been calculated to be

Z‖ = 2MZc

(
φ0

2π

)2(
sin2 ω`

c
+ j sin

ω`

c
cos

ω`

c

)
, (A.44)

‡The VLHC bunches are very much intense than the anti-proton bunches in the Tevatron. Therefore
we assume a smaller covering angle of φ0 = 30◦ than the φ0 = 110◦. In fact, this angle can further be
reduced. For simplicity, we assume the VLHC beam pipe to be cylindrical here.
§The bunches are very much shorter here. Therefore we shorten the Tevatron stripline from 18 cm

to 8 cm.
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Z⊥ =
c

2b2

(
4

φ0

)2

sin2 φ0

2

Z‖
ω

, (A.45)

where the factor 1
2

is inserted in the expression for Z⊥ because one half of the BPM sets

work for the horizontal and one half for the vertical. At low frequencies, the impedances

are inductive,
Z‖
n

= j 2MZc

(
φ0

2π

)2
`

R
= j 0.0025 Ω ,

Z⊥ = j 2.22 MΩ/m . (A.46)

The small ImZ‖/n at low frequencies is expected. Since the betatron function increases

as the square root of the ring circumference C, ImZ‖/n should fall inversely as
√
C

and also the length of the striplines. ImZ⊥ at low frequencies scales as
√
C and b−2

according to Eq. (A.45). Notice that ImZ‖/n at low frequencies is independent of the

size of the beam pipe. At high frequencies, the reactive parts of the impedances oscillate

between inductive and capacitive; for example, the first zero occurs when f = c/(4`) =

0.937 GHz. The real parts rise from zero quadratically with frequency and ReZ‖/n has

a peak value of 0.0018 Ω at 0.695 GHz.
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